(x+5)(2x-3)=x^2-13x+15

Simple and best practice solution for (x+5)(2x-3)=x^2-13x+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+5)(2x-3)=x^2-13x+15 equation:



(x+5)(2x-3)=x^2-13x+15
We move all terms to the left:
(x+5)(2x-3)-(x^2-13x+15)=0
We get rid of parentheses
-x^2+(x+5)(2x-3)+13x-15=0
We multiply parentheses ..
-x^2+(+2x^2-3x+10x-15)+13x-15=0
We add all the numbers together, and all the variables
-1x^2+(+2x^2-3x+10x-15)+13x-15=0
We get rid of parentheses
-1x^2+2x^2-3x+10x+13x-15-15=0
We add all the numbers together, and all the variables
x^2+20x-30=0
a = 1; b = 20; c = -30;
Δ = b2-4ac
Δ = 202-4·1·(-30)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{130}}{2*1}=\frac{-20-2\sqrt{130}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{130}}{2*1}=\frac{-20+2\sqrt{130}}{2} $

See similar equations:

| (X^2)+(y-5)^2=36 | | F(x)=1/2.5^-2-1 | | 25.25t+30.55=82.05 | | 2+1/3*x=2/10*6 | | -2x(8+(-9)=-20+(-3x) | | 4,7x+2,5×=9,2 | | 5x-1,5=3x+10,9 | | 0,8x+3,2x=5,6 | | 3(x+7)^(2)+4=79 | | 3z+15=34 | | 2/z+15=34 | | 2/z+15=34 | | 10x+(14=10+14) | | 10x+(4=10+14) | | 5*9,1*x=91/100 | | 5(n-4)n=10 | | 21/3*x=2/10*6 | | (26-3,5)*x=225 | | 3/4t=2t-1 | | 2/9*x=24 | | 0,3*x=18 | | 1-y+2y=-1 | | -5b-4=-2 | | 5x+1=6÷5 | | (r+2)(r+3)=0 | | -5y+1=10 | | 90+2x+x°+x°=360 | | −10=−2x+8 | | (6k+3)+(3k+7)=9k+9 | | G=2x-5 | | 0=14+4(t-6) | | -43x^2=-44032−43x2=−44032. |

Equations solver categories